ESWC-Logo2018c

ESWC-Logo2018c

We are very pleased to announce that our group got 3 papers accepted for presentation at the ESWC 2018 : The 15th edition of The Extended Semantic Web Conference, which will be held on June 3-7, 2018 in Heraklion, Crete, Greece.

The ESWC is a major venue for discussing the latest scientific results and technology innovations around semantic technologies. Building on its past success, ESWC is seeking to broaden its focus to span other relevant related research areas in which Web semantics plays an important role. ESWC 2018 will present the latest results in research, technologies, and applications in its field. Besides the technical program organized over twelve tracks, the conference will feature a workshop and tutorial program, a dedicated track on Semantic Web challenges, system descriptions and demos, a posters exhibition and a doctoral symposium.

Here are the accepted papers with their abstracts:

  • Formal Query Generation for Question Answering over Knowledge Bases” by Hamid Zafar, Giulio Napolitano and Jens Lehmann.

    Abstract: Question answering (QA) systems often consist of several components such as Named Entity Disambiguation (NED), Relation Extraction (RE), and Query Generation (QG). In this paper, we focus on the QG process of a QA pipeline on a large-scale Knowledge Base (KB), with noisy annotations and complex sentence structures. We therefore propose SQG, a SPARQL Query Generator with modular architecture, enabling easy integration with other components for the construction of a fully functional QA pipeline. SQG can be used on large open-domain KBs and handle noisy inputs by discovering a minimal subgraph based on uncertain inputs, that it receives from the NED and RE components. This ability allows SQG to consider a set of candidate entities/relations, as opposed to the most probable ones, which leads to a significant boost in the performance of the QG component. The captured subgraph covers multiple candidate walks, which correspond to SPARQL queries. To enhance the accuracy, we present a ranking model based on Tree-LSTM that takes into account the syntactical structure of the question and the tree representation of the candidate queries to find the one representing the correct intention behind the question.

  • Frankenstein: a Platform Enabling Reuse of Question Answering Components Paper” Resource Track by  Kuldeep Singh, Andreas Both, Arun Sethupat, Saeedeh Shekarpour.

    Abstract: Recently remarkable trials of the question answering (QA) community yielded in developing core components accomplishing QA tasks. However, implementing a QA system still was costly. While aiming at providing an efficient way for the collaborative development of QA systems, the Frankenstein framework was developed that allows dynamic composition of question answering pipelines based on the input question. In this paper, we are providing a full range of reusable components as independent modules of Frankenstein populating the ecosystem leading to the option of creating many different components and QA systems. Just by using the components described here, 380 different QA systems can be created offering the QA community many new insights. Additionally, we are providing resources which support the performance analyses of QA tasks, QA components and complete QA systems. Hence, Frankenstein is dedicated to improve the efficiency within the research process w.r.t. QA. 

  • Using Ontology-based Data Summarization to Develop Semantics-aware Recommender Systems” by Tommaso Di Noia, Corrado Magarelli, Andrea Maurino, Matteo Palmonari, Anisa Rula.

    Abstract: In the current information-centric era, recommender systems are gaining momentum as tools able to assist users in daily decision-making tasks. They may exploit users’ past behavior combined with side/contextual information to suggest them new items or pieces of knowledge they might be interested in. Within the recommendation process, Linked Data (LD) have been already proposed as a valuable source of information to enhance the predictive power of recommender systems not only in terms of accuracy but also of diversity and novelty of results. In this direction, one of the main open issues in using LD to feed a recommendation engine is related to feature selection: how to select only the most relevant subset of the original LD dataset thus avoiding both useless processing of data and the so called “course of dimensionality” problem. In this paper we show how ontology-based (linked) data summarization can drive the selection of properties/features useful to a recommender system. In particular, we compare a fully automated feature selection method based on ontology-based data summaries with more classical ones and we evaluate the performance of these methods in terms of accuracy and aggregate diversity of a recommender system exploiting the top-k selected features. We set up an experimental testbed relying on datasets related to different knowledge domains. Results show the feasibility of a feature selection process driven by ontology-based data summaries for LD-enabled recommender systems.

Acknowledgement
These work were supported by an EU H2020 grant provided for the HOBBIT project (GA no. 688227), by German Federal Ministry of Education and Research (BMBF) funding for the project SOLIDE (no. 13N14456) as well as by 
European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 642795, WDAqua project.

Furthermore, we are pleased to inform that we got a tutorial accepted, which will be co-located with the ESWC 2018.

Here is the accepted tutorial and its short description:


Looking forward to seeing you at The ESWC 2018.